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UANTIFYING THE EFFECT OF RHEOLOGY ON PLAN-VIEW SHAPES OF LAVA
FLOWS; B.C. Bruno, G.J. Taylor (Planetary Geosciences, Dept. of Geology & Geophysics,
University of Hawaii, Honolulu, HI 96822) and R.M.C. Lopes- Gautier (Jet Propulsion
Laboratory, California Institute of Technology, Mail Stop 183-601, Pasadena, CA 91 109).

Introduction. This study aims at quantifying the effect of rheology on the plan-view shapes of lava flows.
Plan-view shapes of lava flows are important becanse they reflect the processes governing flow emplacement and
may provide insight into lava flow rheology and dynamics. In our earlier investigation (1), we report that
plan-view shapes Of tholeite basalts are fractal, having acharacteristic shape regardless of scale. We also found we
could use the fractal dimension (a parameter which quantifies flow margin convolution) to distinguish between the
two major types Of basalts: a'a and pahoehoe. Encouraged by these earlier results, weare currently developing a
similar method for use on silicic flows and preseat our preliminary work,

Data. Thisanalysis of silicic lavas iS based on measurements of 10 flows. Al of these measurements are

“from images; no field data have been taken to date. We selected only those lava flow margins that appear

unaffected by topography, We divide these flows into two categories based on silica conteat, Separating the
basaltic andesites (Si02: 52-58%) from the more silicic flows (SiOg: 61-74%).

Methodology. This analysis of silicic flows utilizes the Same methodology as our earlier basaltic analysis.
We calculate the fractal dimensions (D) of lava flow margins using the "structured-walk™ method (2). In this
methed, the apparent length (L) of alava flow margin is measured by walking rods of different lengths (r) along
the margin. Since smaller rod lengths traverse more smaller-scale embayments and protrusions in the flow
margin, L increases as r decreases. A linear trend onalog L vs. log r plot (“Richardson plot”) indicates the data
are fractal. ) can then be calculated as Dal-m, where misthe slope of the linear least squares fit line to the data.

Results and Discussion.

1) Basaltic lava flows are fractals. Qur previous analysis of basaltic lava flows indicates that both & a and
pahoehoe flow margins are fractals, within the range of scale studied (r: 0.125m to 2.4km). Richardson plots are
linear (Fig. 1), demonstrating self-similarity.

2) More silicic lava flows are generally not fractals. Silicic lava flows tend to exhibit scale-dependent behavior

within the range of scale studied (r: 10m to 4.5km). Typical Richardson plots for basaltic andesite (Fig. |b) and
dacite (Fig. 1c) are non-linear (not fractal), most notably for the dacite. Unlike the basaltic ease, D tends to
increase as I iNCreases (Fig 2). This breakdown of fractal behavior at increased silica content is presumably related
to the higher viscosities and yield strengths, Which suppress smaller-scale featnres. Plan-view shapes of basaltic
andesites typically have finger-like lobes, hundreds of meters in diameter. Superimposed upon these fingers are
smaller-scale feauwres, resembling crenulations, Assilica content increases further, the lobes tend 1o widen (>1 km
for typical dacites), protrude |€ss from the main mass Of the lava flow, and the smaller crenutations disappear.

3) New Remote Sensing TooL We are in the process Of developing a remote sensing tool that uses fractal
parameters to quantitatively distinguish lava flows of different rheologies. There may be acritical value of r,
related to silicacontent, which serves as @ boundary for self-simitar behavior @.e., a value of r above which the
flow appears fractal). This critical valne may& related tolobe dimensions and/or the degree of suppression of
smaller-scale features. We are currently investigating this hypothesis by simulating suppression of smaller-de
features ON a synthetic fractal. Starting with an ideal fractal (Fig. 3a), we filter out the smaller-scale features,
causing it to no longer be fractal (Fig 3b). Applying the same methodology described above, we generate
Richardson plots (Fig. 4). The result is distinctly non-linear (NOt fractal; Fig. 4b), with a breakdown of fractal
behavior at some critical value of r. This critical value is related to the size of the small-scale features suppressed.
We liken the ideal ease to basaltic flows, and the modified case to silicic flows. Silicic flows may also have
critical values, arid maybe remotely distinguished by these values. We will COmpare our results to those of other
remote sensing techniques aimed at quantifying lava flow morphology (3).

References. (1) Bruno, B.C. et al. (1992), Geophys. Res. Lett. 19,305-308. (2) Richardson, LF. (1961)
Genl. Syst. Yearbook 6, 139-187. (3) Lopes-Gautier, RM.C. et al. (1992), this volume (and references therein).
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Figure 1. Typical Richardson plots for representative 1ava flows: (a) 2'2 basalt, (b) basaltic andesite, (C) dacite.
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Figure 2. D vs. log r for all measured lava flows: (a) & a basalts, (b) basaltic andesites, (C) dacites.

Figure 3. (a) Ideal Koch Triad (fractal); (b) ™
Modified Koch Triad (not fractal),
generated by filtering out smaller-scale
features from (a). We compare (a) with
basalt, as both are self-similar. We

compare (b) with more silicic flows (e.g.

dacite), where high viscosities and yield a

strengths suppress smaller-scale feamres.

3.
Eigure 4. Richardson plots. 3.
Axes are in data numbers. .3 3.
(a) Ideal Koch Triad: linear &0 3
plot, compare with basaluc 8 3
olot (Fig. la); (b) Modified = 3
Koch Triad: non-linear plot, 3
compare with dacitic plot 3

(Fig. te).
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